If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-t^2+2)/(t^2+t)=0
Domain of the equation: (t^2+t)!=0We multiply all the terms by the denominator
t∈R
(-t^2+2)=0
We get rid of parentheses
-t^2+2=0
We add all the numbers together, and all the variables
-1t^2+2=0
a = -1; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-1)·2
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-1}=\frac{0-2\sqrt{2}}{-2} =-\frac{2\sqrt{2}}{-2} =-\frac{\sqrt{2}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-1}=\frac{0+2\sqrt{2}}{-2} =\frac{2\sqrt{2}}{-2} =\frac{\sqrt{2}}{-1} $
| (t^2+3t+3)/(t^2+t)-(2t+1)/t=0 | | x+(2/3x)=180 | | 9(2x+9.5)=-16.5+8x | | -7m^2=0 | | -(m+2)^2×2m+(m+2)(2m-3)×m+7m=0 | | 3-7x-9=50 | | 7m^2=0 | | -2(8+5x)=4 | | -7^2-14=7m | | 3x+15+6x-10=180 | | 7m=7m^2+14m | | -7m^2-14m=0 | | 7m^2-14m=0 | | -7m^2=-14m | | -12n=-6 | | -3(-2y+-8)=-6 | | 9(x+3)/2-6=3 | | 9e−7=7e−11; | | |-10n+4|/7=4 | | 45=8y | | -v-6=18 | | 31d^2=0 | | 1.25=(x-30/2) | | 12x-4=7x-9 | | 7k2−16k+100=0 | | 1/2(-4+6x)=1/3x+2/3(x-9 | | 7+3(2x+9)=40 | | 7+2(2x+9)=40 | | 5x+4=x–6 | | 2x-4=3x+4 | | 1/4q=35/4 | | 5+x-14=-15 |